STATUS/PROSPECT OF DIRECT DETECTION BY IMAGING

Anthony Boccaletti (Paris Obs.)
KNOWN PLANETS

Direct imaging: long ... to very long periods

![Graph showing known planets with mass and semi-major axis data](graph.png)
we have:
- detection / astrometry
- photometry (SED)
- very limited spectroscopy
CURRENT

Massive & Young Giants

b Pic b: Bonnefoy et al. 2013

HR8799 bc: Konopacky et al. 2013

HR8799 bcde: Oppenheimer et al. 2013
Planet Finders: ground based, XAO, coronagraphy, diff. imaging
$\lambda = 1 - 2.5 \, \mu m$

space based, coronagraphy, diff. imaging
$\lambda = 2.5 - 28 \, \mu m$

still young Giants...
Near Future

Observables:
- photometry: 1 - 2.5 μm
2.5 - 28 μm
- spectroscopy (R=30 -300):
 1 - 2.5 μm
 5 - 28 μm (SPICA)

Parameter space:
- mass > 1 M\textsubscript{Jupiter}
- separation > 5 AU
- age < ~200 Myr
- temperature > 300 - 400 K

EXTREMELY LARGE TELESCOPES

Push towards:
- old giants
- super Earths

European-ELT plan
- first light: 2022
- general instruments:
 IR imageur + IR spectrograph + mid IR
 => contribution to exoplanets (still young!)
- exoplanet imageur (PCS):
 decision point in 2022 to start
 => on sky 2022+10/12 yr
 > 2030 (in phase with L3)

Feasibility is debated...
- detection at $10^9 / 10^{10}$
- spectroscopy?
WHAT TO EXPECT FOR L2/L3

- **define a science baseline**
 - a class of object unaccessible from the ground
 - significant gap «in science» with respect to ground projects
 - build on previous missions in the context of ESA roadmap
 - targets available
 - define the covered parameter space/science potential in perspective to ELT (complementarity ?)
 - identify technology
 - feasibility within expectation of L2/L3 (>TRL 5)

- **define a science goal**
 - a class of object (more challenging / ambitious)
 - targets not necessarily available
 - same technology (single mission)
 - feasibility more challenging
WHAT TO EXPECT FOR L2/L3

- define a science baseline
 - class: mature giants (ice giants?)
 - spectroscopy of atmosphere
 - census in volume
 - connection to disks (formation, signpost, ...)
 - targets availability: GAIA, RV from ground
 - technology: high contrast imaging, small telescope (>2m), λ visible, intensity + polarimetry

- define a science goal
 - class: (ice giants?) / telluric planets
 - spectroscopy of atmosphere, surface, habitability
 - census / targets availability: ?
 - technology: push contrast, polarimetry ?